Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202400133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363553

RESUMO

In the aimed research study, a new series of N-(aryl)-3-[(4-phenyl-1-piperazinyl)methyl]benzamides was synthesized, which was envisaged as tyrosinase inhibitor. The structures of these newly designed molecules were verified by IR, 1H-NMR, 13C-NMR, EI-MS and CHN analysis data. These molecules were screened against tyrosinase and their inhibitory activity explored that these 3-substituted-benzamides exhibit good to excellent potential, comparative to the standard. The Kinetics mechanism was investigated through Lineweaver-Burk plots which depicted that molecules inhibited this enzyme in a competitive mode. Moreover, molecular docking was also performed to determine the binding interaction of all synthesized molecules (ligands) with the active site of tyrosinase enzyme and the results showed that most of the ligands exhibited efficient binding energy values. Therefore, it is anticipated that these molecules might serve as auspicious therapeutic scaffolds for treatment of the tyrosinase associated skin disorders.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Piperazinas , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética
2.
Chem Biodivers ; 20(9): e202300257, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37578300

RESUMO

In the presented work, a new series of three different 4-((3,5-dichloro-2-[(2/4-halobenzyl)oxy]phenyl)sulfonyl)morpholines was synthesized and the structure of these compounds were corroborated by 1 H-NMR & 13 C-NMR studies. The in vitro results established all the three compounds as potent tyrosinase inhibitors relative to the standard. The Kinetics mechanism plots established that compound 8 inhibited the enzyme non-competitively. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0025 µM. Additionally, computational techniques were used to explore electronic structures of synthesized compounds. Fully optimized geometries were further docked with tyrosinase enzyme for inhibition studies. Reasonably good binding/interaction energies and intermolecular interactions were obtained. Finally, drug likeness was also predicted using the rule of five (RO5) and Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. It is anticipated that current experimental and computational investigations will evoke the scientific interest of the research community for the above-entitled compounds.


Assuntos
Monofenol Mono-Oxigenase , Sulfonamidas , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Simulação de Acoplamento Molecular , Morfolinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Cinética
3.
ACS Omega ; 8(25): 22899-22911, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396264

RESUMO

The aim of this work was to bring forth some new hybrid molecules having pharmacologically potent indole and 1,3,4-oxadiazole heterocyclic moieties unified with a propanamide entity. The synthetic methodology was initiated by esterification of 2-(1H-indol-3-yl)acetic acid (1) in a catalytic amount of sulfuric acid and ethanol in excess, to form ethyl 2-(1H-indol-3-yl)acetate (2), which was converted to 2-(1H-indol-3-yl)acetohydrazide (3) and further transformed to 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). 3-Bromopropanoyl chloride (5) was reacted with various amines (6a-s) in aqueous alkaline medium to generate a series of electrophiles, 3-bromo-N-(substituted)propanamides (7a-s), and these were further reacted with nucleophile 4 in DMF and NaH base to yield the targeted N-(substituted)-3-{(5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl)sulfanyl}propanamides (8a-s). The chemical structures of these biheterocyclic propanamides were confirmed by IR, 1H NMR, 13C NMR, and EI-MS spectral techniques. These compounds were evaluated for their enzyme inhibitory potentials against the α-glucosidase enzyme, where the compound 8l showed promising enzyme inhibitory potential with an IC50 value less than that of the standard acarbose. Molecular docking results of these molecules were coherent with the results of their enzyme inhibitory potentials. Cytotoxicity was assessed by the percentage of hemolytic activity method, and these compounds generally exhibited very low values as compared to the reference standard, Triton-X. Hence, some of these biheterocyclic propanamides might be considered as salient therapeutic agents in further stages of antidiabetic drug development.

4.
RSC Adv ; 13(20): 13798-13808, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37197574

RESUMO

Considering the varied pharmacological prominence of thiazole and oxadiazole heterocyclic moieties, a unique series of bi-heterocyclic hybrids, 8a-h, was synthesized in a convergent manner. The structures of newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, and IR spectral studies. The structure-activity relationship of these compounds was predicted by examining their inhibitory effects against alkaline phosphatase, whereby all these molecules exhibited superb inhibitory potentials relative to the standard used. The kinetics mechanism was determined by Lineweaver-Burk plots which revealed that 8g inhibited the studied enzyme non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.42 µM. The allosteric computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal mol-1). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules have potential to be nontoxic medicinal scaffolds for the treatment of alkaline phosphate-associated ailments.

5.
ACS Omega ; 8(13): 11952-11965, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033856

RESUMO

An array of 1,3,4-oxadiazole hybrids, 7a-s, structurally intriguing cores with potential in natural product synthesis and drug discovery, have been synthesized using innovative comparable conventional and microwave-assisted protocols. The synthesis was performed by the reaction of secondary amine-based acetamides, 6a-s, as the electrophile and piperidine-based oxadiazoles as the nucleophile, 3, under the metal-free reaction conditions. High yield in minimum time with highest purity was obtained by the microwave-irradiated method instead of the conventional one. The structural elucidations were made through infrared, 1H NMR, 13C NMR, and elemental analysis studies. The whole array of synthesized compounds, 7a-s, was evaluated for their potential against α-glucosidase and butyryl cholinesterase (BChE) enzymes. Natural bond orbital and structural optimizations were made by using the B3LYP method and the basis set of 6-311++G(d,p). Frontier molecular orbitals and molecular electrostatic potential were calculated at the same level of selected compounds as potential candidates against BChE and α-glucosidase enzymes utilizing the time-dependent density functional theory. Fifteen compounds out of 19 were observed to be active against α-glucosidase enzyme in comparison with acarbose as the reference standard and 7 against the BChE enzyme compared to eserine as the reference standard. The highest potential of compound 7j against BChE is well correlated by the higher binding interaction with target protein as -10.2, calculated by docking studies. The recruited compounds against both enzymes could be the best anti-enzymatic drugs and part of drugs discovery programs after further analysis.

6.
Pak J Pharm Sci ; 35(2): 447-456, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35642399

RESUMO

The synthetic methodology was initiated by reacting 1,4-benzodioxane-6-amine (1) with 2-bromoacetyl bromide (2) in aqueous alkaline media under dynamic pH control to get compound 2,3-dihydro-1,4-benzodioxin-6-yl-2-bromoacetamide (3). In the subsequent reactions, a variety of un/substituted-benzoic acids (4a-k), through a succession of three steps, was converted into respective oxadiazole nucleophiles, 7a-k. Finally, the targeted molecules, 8a-k, were obtained by reacting 7a-k with electrophile 3 in an aprotic polar solvent. These compounds were corroborated by spectral characterization like IR, EI-MS, 1H-NMR, and CHN analysis data. These molecules were screened for their antibacterial potential and most of them exhibited a potent activity. Moreover, their cytotoxicity was profiled through hemolytic activity and it was observed that majority of them was very modest in toxicity.


Assuntos
Acetamidas , Antibacterianos , Antibacterianos/toxicidade , Estrutura Molecular , Oxidiazóis/química , Relação Estrutura-Atividade
7.
Pak J Pharm Sci ; 35(2): 579-585, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35642415

RESUMO

2-Furoyl-1-piperazine (1) was treated with a series of alkyl/aryl sulfonyl chlorides (2a-i) under benignant conditions to obtain its N-sulfonated derivatives (3a-i). These compounds were screened for their antibacterial potential against pathogenic bacteria. The low Minimum Inhibitory Concentration (MIC) values of these molecules, in comparison of ciprofloxacin, demonstrated their high antibacterial potential. Cytotoxic activities were ascertained through their hemolytic potential and mild hemolytic profiles of these compounds proved them to be promising compounds for drug designing and development.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/farmacologia , Bactérias , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Piperazina
8.
Pak J Pharm Sci ; 35(1(Supplementary)): 209-217, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228179

RESUMO

1,2,4-triazoles are a major group of heterocyclic compounds. In the current work, a concise library of such triazoles synthesized through a multistep protocol. The synthesis involved hydrazinolysis of ethyl-2-(p-Cl-phenoxy) acetate followed by reflux with phenyl isothiocyanate to yield the intermediate 2-[2-(p-Cl-phenoxy)acetyl)-N-phenyl-hydrazinecarbothioamide. This intermediate was then cyclized to form 5-[p-(Cl-phenoxy)-methyl]-4-phenyl-4H-1,2,4-triazole-3-thiol (the parent moiety) at alkaline pH. In parallel, 3-bromopropionyl bromide was reacted with a series of phenylamines to yield N-(substituted-phenyl)bromopropanamides. In the final step, N-substitution of 5-[p-(Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-thiol was carried out with N-(substituted-phenyl)bromopropanamides to give desired library of 3-[5-[(p-Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-ylthio]-N-(substituted-phenyl) propan-amides (8a-l). The prepared moieties were identified via IR, NMR, & EIMS and evaluated for urease and anti-proliferative activities. 3-[5-[(p-Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-ylthio]-N-(3-methyl-phenyl)propanamide 8k, was found to be most prominent hit as urease inhibitor (IC50= 42.57± 0.13 µM) using thiourea as standard (IC50= 21.25±0.15µM). The interaction of 8k with urease were studied using docking studies. Anti-proliferative activity results showed 8k as promising candidates and rest of the synthesized derivatives were found to be moderately anti-proliferative. Molecular docking results also displayed 8k, 8h, and 8c as potential hits for further study.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Triazóis/síntese química , Triazóis/farmacologia , Urease/antagonistas & inibidores , Células HCT116 , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Urease/química
9.
Iran J Pharm Res ; 20(2): 206-228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567157

RESUMO

Considering the diversified pharmacological importance of thiazole and triazole heterocyclic moieties, a unique series of S-aralkylated bi-heterocyclic hybrids, 7a-l, was synthesized in a convergent manner. The structures of newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR, and EI-MS spectral studies. The structure-activity relationship of these compounds was envisaged by analyzing their inhibitory effects against tyrosinase, whereby all these molecules exhibited potent inhibitory potentials relative to the standard used. The Kinetics mechanism was ascertained by Lineweaver-Burk plots, which revealed that 7g inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0057µM. These bi-heterocyclic molecules also disclosed good binding energy values (kcal /mol) when assessed computationally. So, these molecules can be considered promising medicinal scaffolds for the treatment of skin disorders.

10.
Iran J Pharm Res ; 19(1): 487-506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922502

RESUMO

The synthesis of a novel series of bi-heterocyclic propanamides, 7a-l, was accomplished by S-substitution of 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). The synthesis was initiated from ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (1) which was converted to corresponding hydrazide, 2, by hydrazine hydrate in methanol. The refluxing of hydrazide, 2, with carbon disulfide in basic medium, resulted in 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). A series of electrophiles, 6a-l, was synthesized by stirring un/substituted anilines (4a-l) with 3-bromopropanoyl chloride (5) in a basic aqueous medium. Finally, the targeted compounds, 7a-l, were acquired by stirring 3 with newly synthesized electrophiles, 6a-l, in DMF using LiH as a base and an activator. The structures of these bi-heterocyclic propanamides were confirmed through spectroscopic techniques, such as IR, 1H-NMR, 13C-NMR, and EI-MS. These molecules were tested for their urease inhibitory potential, whereby, the whole series exhibited very promising activity against this enzyme. Their cytotoxic behavior was ascertained through hemolysis and it was observed that all these were less cytotoxic agents. The in-silico molecular docking analysis of these molecules was also in full agreement with their in-vitro enzyme inhibition data.

11.
Pak J Pharm Sci ; 33(1): 41-47, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122829

RESUMO

The current research was commenced by reaction of 1,4-benzodioxane-6-amine (1) with 4-nitrobenzenesulfonyl chloride (2) in the presence of aqueous base under dynamic pH control at 9 to yield N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamide (3) which was further reacted with a series of alkyl/aralkyl halides (4a-i) in polar aprotic solvent using catalytic amount of lithium hydride which acts as base to afford some new N-alkyl/aralkyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-nitrobenzenesulfonamides (5a-i). The projected structures of all the synthesized derivatives were characterized by contemporary techniques i.e., IR, 1H-NMR and EIMS. The biofilm Inhibitory action of all synthesized molecules was carried out against Escherichia coli and Bacillus subtilis. It was inferred from their results that 5f and 5e exhibited suitable inhibitory action against the biofilms of these bacterial strains. Moreover, their cytotoxicity was also checked and it was concluded that these synthesized molecules displayed docile cytotoxicity.


Assuntos
Biofilmes/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade , Animais , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bovinos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
12.
Pak J Pharm Sci ; 33(1): 149-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122843

RESUMO

A series of new compounds (5a-q), derived from 5-(1-(4-nitrophenylsulfonyl) piperidin-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol (3) were proficiently synthesized to evaluate their biological activities. 1-(4-Nitrophenylsulfonyl) piperidine-4-carbohydrazide (2) was refluxed with phenylisothiocyanate to yield an adduct which was cyclized to compound 3 by reflux reaction with 10 % potassium hydroxide. The targeted compounds 5a-q, were synthesized by stirring alkyl/aralkyl halides (4a-q) and compound 3 in a polar aprotic solvent. 1H-NMR, 13C-NMR, EI-MS and IR spectral techniques were employed to confirm the structures of all the synthesized compounds. The compounds were biologically evaluated for BSA binding studies followed by anti-bacterial, anti-inflammatory and acetylcholinesterase (AChE) activities. The active sites responsible for the best AChE inhibition were identified through molecular docking studies. Compound 5e bearing 4-chlorobenzyl moiety found most active antibacterial and anti-inflammatory agent among the synthesized compounds. The whole library of synthesized compounds except compounds 5d and 5f was found highly active for AChE inhibition and recommended for in vivo studies so that their therapeutic applications may come in utilization.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Albumina Sérica/metabolismo , Triazóis/farmacologia , Antibacterianos/síntese química , Anti-Inflamatórios/síntese química , Inibidores da Colinesterase/síntese química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
13.
Bioorg Chem ; 94: 103445, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826809

RESUMO

In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Melaninas/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Piperazina/farmacologia , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Melaninas/metabolismo , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade , Peixe-Zebra
14.
Pak J Pharm Sci ; 33(5): 2161-2170, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33824125

RESUMO

In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.


Assuntos
Acetamidas/síntese química , Acetamidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Acetamidas/toxicidade , Animais , Antibacterianos/toxicidade , Antifúngicos/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bovinos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
15.
Pak J Pharm Sci ; 33(4): 1609-1616, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583794

RESUMO

In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.


Assuntos
Antibacterianos/síntese química , Piperazina/síntese química , Animais , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bovinos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Piperazina/farmacologia , Relação Estrutura-Atividade
16.
Pak J Pharm Sci ; 33(4): 1697-1705, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583804

RESUMO

A series of propanamide compounds 6a-l was derived by N-substitution reactions, encompassing tosyl, piperidine and 1,3,4-oxadiazole moieties. The intended array of compounds 6a-l was afforded by a series of five steps reaction scheme. 1-Tosylpiperidin-4-carboxylate (1) was synthesized by the reaction of tosyl chloride (a) with ethyl isonipecotate (b) under mild basic conditions. Compound 1 was subjected to nucleophillic substitution by hydrazine to synthesize 1-tosylpiperidin-4-carbohydrazide (2). The compound, 5-(1-tosylpiperidin-4-yl)-1,3,4-oxadiazole-2-thiol (3) was synthesized by intermolecular cyclization of compound 2 by CS2 under strong basic conditions. The target compounds, 6a-l, were finally synthesized from 3 by reacting with different electrophiles, 5a-l, in an aprotic polar solvent with sodium hydride as an activator. The different propanamoyl electrophiles, 5a-l, were synthesized by the reaction of different aromatic and aliphatic amines, 4a-l, with 3-bromopropionyl chloride under mild basic conditions. The structural elucidation was carried out using modern spectroscopic techniques including IR, 1H-NMR and EI-MS. The antibacterial potential of synthesized compounds was assessed against five bacterial strains. Compounds 6a, 6c, 6d, 6e and 6f were found to be potent antibacterial agents.


Assuntos
Antibacterianos/síntese química , Oxidiazóis/química , Piperidinas/química , Compostos de Tosil/química , Hidrazinas/química , Testes de Sensibilidade Microbiana
17.
Acta Chim Slov ; 67(2): 403-414, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33855544

RESUMO

The designed bi-heterocyclic sulfonamides were synthesized through a two-step protocol and their structures were ascertained by spectral techniques including IR, 1H NMR and 13C NMR along with CHN analysis. The in vitro inhibitory effects of these sulfonamides were evaluated against tyrosinase and kinetics mechanism was analyzed by Lineweaver-Burk plots. The binding modes of these molecules were ascribed through molecular docking studies. These synthesized bi-heterocyclic molecules were identified as potent inhibitors relative to the standard (kojic acid) and compound 5 inhibited the tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki (0.09 µM) for compound 5 was calculated from Dixon plots. Computational results also displayed that all compounds possessed good binding profile against tyrosinase and interacted with core residues of target protein.


Assuntos
Inibidores Enzimáticos/síntese química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Sulfonamidas/síntese química , Agaricales/enzimologia , Domínio Catalítico , Ensaios Enzimáticos , Inibidores Enzimáticos/metabolismo , Cinética , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/metabolismo
18.
Braz. J. Pharm. Sci. (Online) ; 56: e18092, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142491

RESUMO

We synthesized a series of compounds bearing pharmacologically important 1,3,4-oxadiazole and piperidine moieties. Spectral data analysis by 1H-NMR, 13C-NMR, IR and EI-MS was used to elucidate the structures of the synthesized molecules. Docking studies explained the different types of interaction of the compounds with amino acids, while bovine serum albumin (BSA) binding interactions showed their pharmacological effectiveness. Antibacterial screening of these compounds demonstrated moderate to strong activity against Salmonella typhi and Bacillus subtilis but only weak to moderate activity against the other three bacterial strains tested. Seven compounds were the most active members as acetyl cholinesterase inhibitors. All the compounds presented displayed strong inhibitory activity against urease. Compounds 7l, 7m, 7n, 7o, 7p, 7r, 7u, 7v, 7x and 7v were highly active, with respective IC50 values of 2.14±0.003, 0.63±0.001, 2.17±0.006, 1.13±0.003, 1.21±0.005, 6.28±0.003, 2.39±0.005, 2.15±0.002, 2.26±0.003 and 2.14±0.002 µM, compared to thiourea, used as the reference standard (IC50 = 21.25±0.15 µM). These new urease inhibitors could replace existing drugs after their evaluation in comprehensive in vivo studies.


Assuntos
Simulação por Computador/classificação , Salmonella typhi/classificação , Sulfonamidas/efeitos adversos , Tioureia , Bacillus subtilis/classificação , Urease , Soroalbumina Bovina , Preparações Farmacêuticas/administração & dosagem , Inibidores da Colinesterase/farmacologia , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética/métodos , Análise de Dados , Aminoácidos/antagonistas & inibidores
19.
Pak J Pharm Sci ; 32(5): 1957-1964, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813858

RESUMO

The present study comprises the synthesis of a new series of benzenesulfonamides derived from N-sulfonation of 2-(4-methoxyphenyl)-1-ethanamine (1). The synthesis was initiated by the reaction of 2-(4-methoxyphenyl)-1-ethanamine (1) with benzenesulfonyl chloride (2), to yield N-(4-methoxyphenethyl)benzenesulfonamide (3). This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides (4a-j) in N,N-dimethylformamide (DMF) and in the presence of a weak base lithium hydride (LiH) to obtain various N-(alkyl/aralkyl)-N-(4-methoxyphenethyl) benzenesulfonamides (5a-j). The characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. Elemental analysis also supported this data. The biofilm inhibitory action of all the synthesized compounds was carried out on Escherichia coli and some of the compounds were identified to be very suitable inhibitors of this bacterial strain. Furthermore, the molecules were also tested for their cytotoxicity behavior to assess their utility as less cytotoxic therapeutic agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Biofilmes/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química
20.
Pak J Pharm Sci ; 32(5): 2003-2010, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813864

RESUMO

The aims of the present investigation were to assess the antibacterial, antifungal, enzyme inhibition and hemolytic activities of various fractions of Rhynchosia pseudo-cajan Cambess. The methanolic extract of the plant was dissolved in the water (distilled) and then partitioned with the n-hexane, chloroform, EtOAc and n-BuOH sequentially. Antibacterial activity was checked against Escherichia coli, Pasturella multocida, Bacillus subtilis and Staphylococcus aureus by the disc diffusion method using streptomycin sulphate, a standard antibiotic, as positive control. Chloroform and ethyl acetate soluble fractions showed good activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. These fractions also showed good MIC values. The n-butanol soluble and remaining aqueous fraction also showed good activity against some strains. Antifungal activity was studied against four fungi i.e. Aspergillus niger, Aspergillus flavus, Ganoderma lucidum and Alternaria alternata by the disc diffusion method using fluconazole, a standard antifungal drug, as positive control. Chloroform, n-butanol and ethyl acetate soluble fraction showed good activity only against G. lucidum. Enzyme inhibition studies were done against four enzymes i.e. α-glucosidase, butyrylcholinesterase, acetyl cholinesterase and lipoxygenase. Aqueous fraction possessed very good activity against α-glucosidase, even greater than acarbose, a reference standard drug. Its IC50 value was found as 29.81±0.12 µg/ml as compared to acarbose having IC50 38.62±0.04 µg/ml. Chlroform and ethyl acetate soluble fractions also showed good activity against α-glucosidase. Ethyl acetate soluble and remaining aqueous fractions showed good activity against lipoxygenase. All the studied fractions showed very less toxicity i.e. <2.5%.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fabaceae/química , Hemólise/efeitos dos fármacos , Hemolíticos/farmacologia , Extratos Vegetais/farmacologia , 1-Butanol/química , Bactérias/efeitos dos fármacos , Clorofórmio/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/métodos , Fungos/efeitos dos fármacos , Hexanos/química , Testes de Sensibilidade Microbiana/métodos , Fitoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...